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Abstract 

The effect of concurrent load on generalization performance in human contingency learning 

was examined in two experiments that employed the combined positive and negative 

patterning procedure of Shanks and Darby (1998). In Experiment 1 we tested 32 

undergraduates and found that participants who were trained and tested under full attention 

showed generalization consistent with the application of an opposites rule (i.e., single cues 

signal the opposite outcome to their compound), whilst participants trained and tested under a 

concurrent cognitive load showed generalization consistent with surface similarity. In 

Experiment 2, we replicated the effect with 148 undergraduates, and provided evidence that it 

was the presence of concurrent load during training, rather than during testing, that was 

critical. Implications for associative, inferential, and dual-process accounts of human learning 

are discussed. 

 

 

 Keywords: rules; associative learning; generalization; working memory; 

deliberative processing. 
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Effect of Concurrent Load on Feature- and Rule-based Generalization  

in Human Contingency Learning 

 

 The distinction between deliberative and non-deliberative processing, under a variety 

of different names, is fundamental to the study of cognition. For example, theorists seek to 

distinguish between propositional and associative learning (McLaren, Green & Mackintosh, 

1994; Mitchell, De Houwer & Lovibond, 2009), between analytic and nonanalytic 

categorization (Brooks, 1978; see also Ashby, Alfonso-Reese, Turken & Waldron, 1998), 

between automatic and intentional retrieval from memory (Jacoby, 1991; Mandler, 1980), 

and between intuitive and deliberate reasoning (Kahneman, 2003; see also Sloman, 1996).  

Deliberative processing is generally considered to go beyond surface similarity to extract 

causal (De Houwer & Beckers, 2003) or abstract (Shanks & Darby, 1998) structure, or to 

detect and correct irrational non-deliberative inferences (Kahneman, 2003). Deliberative 

thought processes are also often considered to be those that involve a degree of recurrence – 

in the sense that one goes through a series of intermediate stages to arrive at the final 

response (Milton & Wills, 2004). Another, related, way of capturing this idea of recurrence is 

to say that deliberative thought approximates the operation of a physical symbol system 

(Newell, 1980) – the ideas are related because certain recurrent, neural-like, structures have 

been shown to be able to implement a Universal Turing Machine (i.e. a general-purpose 

computer, Siegelmann & Sontag, 1995).  Some argue that the ability to approximate a 

physical symbol system is what underlies the apparent discontinuity between human and non-

human minds (Penn, Holyoak & Povinelli, 2008). Non-deliberative processing, on the other 

hand, is considered to be less effortful, less reliant on working memory resources, and to 

generalize on the basis of surface similarity (Kemler Nelson, 1984; J.D. Smith & Shapiro, 

1989; E. E. Smith, Patalano & Jonides, 1998). 
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 In the current studies we investigated the relationship between concurrent cognitive 

load and the extent to which people engage in deliberative processing when acquiring new 

information. It is known that people with comparatively large working memories learn some 

tasks more quickly than people with comparatively small working memories (Kyllonen & 

Stephens, 1990), and that concurrent cognitive load can disrupt the learning of, for example, 

within-compound associations (Aitken et al., 2001). In the current studies, we were interested 

primarily in the relationship between concurrent cognitive load and the nature of what is 

learned. 

 One related study is that by De Houwer and Beckers (2003). In their forward cue 

competition experiment, participants first observed (in a computer game scenario) that firing 

a particular weapon (A) was followed by the destruction of a tank. Later on, weapon A was 

fired simultaneously with a new weapon, B. This compound firing also led to the destruction 

of the tank. Participants were then asked about the causal status of weapon B with respect to 

the destruction of the tank.  De Houwer and Beckers found that the imposition of a 

concurrent working memory load led to higher ratings for the extent to which B was 

considered to cause the tank’s destruction, compared to a situation where the same 

contingencies were observed in the absence of a concurrent load. Their interpretation of these 

results was that the imposition of a concurrent load interfered with the deliberative processes 

required to work out that the causal status of B was uncertain (B is related to the outcome by 

contiguity, but B always occurs in the presence of A, and hence B’s causal relation to the 

outcome is uncertain). Incidentally, De Houwer and Beckers (2003) found a significant effect 

of concurrent load only when load was applied during both the initial training phase and the 

subsequent rating phase. This is consistent with Aitken et al.’s (2001) earlier work, which 

employed concurrent load during training only, and found no significant effect of concurrent 

load on forward cue competition under these conditions. 
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In another related study, Waldron and Ashby (2001) demonstrated that concurrent 

working memory load retarded the acquisition of category structures definable in terms of a 

simple (single-attribute) rule, whilst the acquisition of category structures for which the rule 

was complex and non-intuitive was not significantly affected by concurrent load. Waldron 

and Ashby concluded that concurrent load interfered with the deliberative (rule-based) 

categorization process that would normally dominate in the simple-rule case, but that 

concurrent load left unaffected the non-deliberative processes underlying the acquisition of 

the more complex category structure (see also Filoteo, Lauritzen & Maddox, 2010). 

 One of the inherent difficulties in attempting to demonstrate a relationship between 

the availability of working memory resources and the extent to which learning proceeds 

deliberatively is to find a type of learning behavior that is unambiguously outside the scope 

of non-deliberative theories of cognition. For example, Nosofsky and Kruschke (2002) have 

argued that the results of Waldron and Ashby (2001) can be accounted for by a non-recurrent, 

non-deliberative, exemplar model (ALCOVE; Kruschke, 1992). The basis of Nosofsky and 

Kruschke’s argument is that concurrent load may be hypothesized to disrupt learned selective 

attention. This disruption will affect learning tasks in which selective attention is helpful 

(such as categories defined by a single attribute). Forward cue competition is also, at least in 

part, the result of learned selective attention (Kruschke, Kappeman & Hetrick, 2005; Wills, 

Lavric, Croft & Hodgson, 2007), so the idea that concurrent load disrupts selective attention 

might also, in principle, account for the forward cue competition results of De Houwer and 

Beckers (discussed above). 

 In the current studies, we examined the role of concurrent load in the learning and 

generalization task introduced by Shanks and Darby (1998). Our choice of task was 

motivated by the observation that the performance of a subset of participants in this task was, 

across all published discussions of the result that we were aware of, considered to be 
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evidence for the role of deliberative processing in learning. This view had been expressed 

both by those who argue for a central role of associative processes in human learning (e.g. 

Cobos, Almaraz & Garcia-Madruga, 2003; Le Pelley, Oakeshott, Wills & McLaren, 2005), 

and those who argue that human learning is largely the result of conscious deliberative 

processes of inference (e.g. De Houwer & Beckers, 2002; Mitchell et al., 2009). Verguts and 

Fias (2009) have argued that the behavior of this subset of participants can be accounted for 

by a recurrent connectionist model – this argument is consistent with the position, outlined 

above, that recurrence is a characteristic feature of deliberative processing and that recurrent 

network architectures can implement general-purpose computational systems. Of course, the 

absence of published non-deliberative accounts of the Shanks and Darby (1998) results does 

not necessarily imply that plausible non-deliberative accounts are impossible – simply that 

none have thus far been publicly proposed. We return to this issue in the General Discussion, 

where it can be considered in relation to the data presented in the current paper. 

 The design and key result of Shanks and Darby (1998) is shown in Figure 1. 

Participants were asked to take the role of an allergist, attempting to predict which foods will 

cause an allergic reaction in a hypothetical patient, Mr. X. In Figure 1, letters stand for foods, 

“+” indicates the presence of an allergic reaction, and “-“ indicates the absence of an allergic 

reaction. The training phase contained two complete negative patterning problems (e.g. A+, 

B+, AB-) and two complete positive patterning problems (e.g. C-, D-, CD+). Training also 

contained four incomplete patterning problems (e.g. participants see I+ and J+ but not IJ). 

The critical results concern participants’ generalization to novel items, such as IJ, in the 

absence of feedback. For example, say you have observed that Mr. X develops an allergic 

reaction when he eats ice cream (I) and when he eats jelly (J). Do you predict the presence or 

absence of an allergic reaction when eating ice cream and jelly together? 
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 A non-deliberative, surface similarity, process is likely to predict allergic reaction to 

IJ, as IJ is similar to both I and J, both of which produced an allergic reaction. A deliberative 

process, however, might detect that an opposites rule succinctly captures the information 

available during training – single foods produce the opposite reaction to their compounds. On 

this basis, IJ is predicted to not result in an allergic reaction, because this is the opposite 

outcome to that for I occurring on its own (and for J occurring on its own). As shown in 

Figure 1, Shanks and Darby found that participants who achieved a high level of accuracy 

during training showed generalization consistent with the application of an opposites rule, 

while participants who performed less well in training showed generalization consistent with 

surface similarity. Shanks and Darby’s hypothesis (and ours) is that this transition in 

generalization reflects a transition from non-deliberative to deliberative processing during the 

course of training. We further hypothesize that, if opposites-rule and surface-feature 

generalization are indeed the products of deliberative and non-deliberative processing 

respectively, then the availability of working memory resources should determine whether 

opposites-rule or surface-feature generalization is seen (under the assumption that 

deliberative processing makes greater demands on working memory than non-deliberative 

processing). 

 Existing evidence could be employed, in a fairly indirect manner, to argue either for, 

or against, our hypothesis. On the one hand, Winman, Wennerholm, Juslin and Shanks (2005) 

demonstrated that opposites-rule generalization was related to performance on Raven’s 

Progressive Matrices (RPM). RPM are considered to be a measure of general intelligence (g) 

and g appears to be related to working memory capacity (Conway, Kane & Engle, 2003). 

Hence one might argue that working memory capacity is likely to be positively correlated 

with opposites-rule generalization in the Shanks-Darby task and therefore that concurrent 

load, through limiting the availability of working memory resources, should lead to feature-
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based generalization. On the other hand, De Houwer and Vandorpe (2009) demonstrated 

performance consistent with opposites-rule generalization in the Implicit Association Test 

(IAT; Greenwald, McGhee & Schwartz, 1998). Although a matter of some debate (Fazio & 

Olson, 2003), the IAT (as its name suggests) is often considered to index non-deliberative 

processing. Similarly, generalization in tasks such as artificial grammar learning, which is 

often considered to be characterized by non-deliberative processing, can be quite abstract in 

nature (e.g. Beesley, Wills & Le Pelley, 2010). Also, opposites-rule generalization is related 

to participants demonstrating an inverse base-rate effect (Winman et al., 2005), yet 

demonstration of an inverse base-rate effect has been reported to be unaffected by a 

concurrent load (Lamberts & Kent, 2007). 

 In Experiment 1, we compared people learning and being tested on the Shanks and 

Darby task under full attention with those learning and being tested under a concurrent 

working memory load. We hypothesized that those trained and tested under concurrent load 

would show generalization more consistent with surface similarity, whilst those trained and 

tested in the absence of such a load would show generalization more consistent with the 

application of an opposites rule.  Concurrent load was presented during test as well as during 

training in order to minimize the opportunity for concurrent load participants to extract the 

rule during the test phase – previous work on the forward blocking procedure (De Houwer & 

Beckers, 2003) indicated that this might be a possibility. 

 

Experiment 1 

Method 

Participants, apparatus and stimuli. Thirty-two Exeter University students took 

part on a voluntary basis. They were tested individually in a quiet testing room using a PC 

connected to a 15” CRT monitor and to headphones, and running E-prime (Version 1.1). For 
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half the participants the foods A-P (see Figure 1A) were, respectively, cheese, garlic, milk, 

mushrooms, sea food, red meat, olive oil, coffee, banana, eggs, orange squash, bread, 

avocado, peanuts, pasta, and chocolate. For the remaining participants, the foods assigned to 

A and B were swapped with those assigned to C and D, and similarly for E/F and G/H, for I/J 

and K/L, and for M/N and O/P.  

Procedure. Participants were asked to assume the role of an allergist, predicting 

whether a hypothetical patient, Mr. X, would or would not develop an allergic reaction after 

eating a meal containing certain foods. Participants received up to eight blocks of training, 

each block comprising two presentations of the 18 training trial types shown in Figure 1A, in 

a random order. At the end of each block, allergy prediction performance in that block was 

assessed against a criterion of 32 correct responses (out of 36, 89% accuracy). Participants 

meeting or exceeding this criterion proceeded immediately to the test phase; those that did 

not continued with training. The transition between training blocks was not signaled to 

participants, but the transition to the test phase was signaled (by the presentation of 

instructions indicating feedback would no longer be provided). The test phase comprised two 

presentations of the 24 test trial types shown in Figure 1A, in a random order. 

Participants were randomly assigned to either the load or the no-load condition of the 

experiment. In the load condition, each trial (in both training and in test) began with the 

presentation of six, different, single-digit, randomly selected, numbers over headphones at 

330ms intervals. After the presentation of the 6
th

 digit, a fixation cross appeared on the screen 

for 500ms, followed by a blank screen for 500ms. Food names were then presented on the 

screen, and participants pressed a key to indicate whether or not Mr. X would suffer an 

allergic reaction. No time limit was set for these responses. During the training phase, each 

trial was followed by a feedback message of 1500ms duration (e.g. “Correct! Mr. X 

developed an allergic reaction”). No feedback was given during the test phase. In both the 
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training phase and the test phase, each trial ended with participants being  presented with a 

single digit on the screen (the probe), to which they were expected to respond by reporting 

the digit that immediately followed the probe in the most recently presented set of six digits. 

For example, if the participant had just heard, “6, 8, 2, 7, 9, 3”, and the probe digit was 8, 

then the correct answer was “2”. Participants reported their decision by pressing the 

corresponding number key on the computer keyboard. No feedback was given on the number 

responses, and no time limit was imposed.  The next trial began 500 ms after the participant 

pressed a number key. 

The procedure for the no-load condition differed from the procedure for the load 

condition in that the auditory presentation of digits was removed and replaced by a blank 

interval of the same duration. A digit was still visually presented at the end of each trial, but 

the task in the no-load condition was to press the key on the keyboard corresponding to the 

visually presented digit (e.g. to press 9 if the presented digit was 9). The no-load condition 

was implemented in this way in order to approximately match the timing and motor response 

requirements of the load condition. Of course, as intended, the two conditions were not 

matched on the difficulty of the secondary task. 

Practice trials. In both the load and the no-load condition, the experiment proper was 

preceded by 10 practice trials on the digit task. In the load condition, these practice trials 

were identical to the test phase trials of the load condition, except that the meal presentation 

was replaced by an instruction to press one of the two response keys. In the practice task for 

the no-load condition, the auditory presentation of digits was replaced by a blank interval of 

the same duration, and the practice task involved pressing a key on the keyboard 

corresponding to the visually presented digit. 

Results and Discussion 
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 Seven participants from the load condition, and three participants from the no-load 

condition, failed to meet the training criterion within the eight blocks available and were 

excluded from further analysis. After these exclusions, proportion correct in the final training 

block was similar for the concurrent load participants (mean = .94, SD = .04), and the no-load 

participants (mean = .93, SD = .04), t(20) < 1. Unsurprisingly, the load participants took 

longer to reach criterion (mean = 6.9 blocks , SD = 1.1) than the no-load participants ( mean 

= 4.2, SD = 1.5),  t(20) = 4.80, p < .0005. Accuracy on familiar test items was investigated 

via ANOVA, with a between-subject factor of concurrent load (present vs. absent), and a 

within-subject factor of test item type (positive items vs. negative items; where positive and 

negative indicate the presence and absence of an allergic reaction to the food during training). 

Although there was a main effect of test item type, F(1,20) = 873.8, p < .0005, neither the 

main effect of concurrent load, F(1,20) < 1, nor the interaction between concurrent load and 

test item type, F(1, 20) = 2.64, were significant. Hence, no statistically reliable effects of 

concurrent load were found on test items familiar to participants. This is consistent with the 

hypothesis that responses to familiar test items in this study are the product of a relatively 

automatic memory retrieval process. The mean proportion of allergy responses to positive 

familiar test items was .93, whilst the mean proportion of allergy responses to negative 

familiar test items was .08. 

 As Figure 2A illustrates, participants in the no-load condition responded to the novel 

compounds (MN, IJ) in a manner consistent with the application of an opposites rule, whilst 

participants in the load condition responded in a manner consistent with surface-similarity 

generalization. ANOVA confirms the presence of a significant interaction between 

concurrent load (present vs. absent) and stimulus type (MN vs. IJ), F(1,20) = 27.8, p < .0005; 

the main effect of concurrent load, F(1, 20) = 1.12, and the main effect of stimulus type, F(1, 

20) = 2.34, were not significant. Similarly, and as illustrated in Figure 2B, participants in the 
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no-load condition responded in a manner consistent with the application of an opposites rule 

to K/L and O/P, whilst participants in the load condition responded in a manner consistent 

with surface-similarity generalization.  ANOVA confirmed the presence of a significant 

interaction between concurrent load (present vs. absent) and stimulus type (K/L vs. O/P), 

F(1,20) = 18.2, p < .0005; the main effect of concurrent load, F(1, 20) < 1, and the main 

effect of stimulus type, F(1,20) = .69, were not significant.  

 Further investigation of the interaction illustrated in Figure 2A revealed that the 

proportion of allergy responses was significantly higher for MN than for IJ in the absence of 

concurrent load, t(12) = 7.58, p < .005. In the presence of concurrent load, IJ is higher than 

MN, but this difference is not significant, t(8) = 1.84, p = .10. Further investigation of the 

interaction illustrated in Figure 2B revealed that the proportion of allergy responses was 

significantly higher for K/L than for O/P in the absence of concurrent load, t(12) = 4.56, p < 

.005. In the presence of concurrent load, K/L was lower than O/P but this difference was not 

significant, t(8) = 1.74, p = 0.12. 

Finally, it is possible to combine the four probabilities IJ, MN, K/L and O/P into a 

single index of opposites-rule versus surface-similarity generalization. Computing ( MN - IJ 

+ mean[K,L] – mean[O,P] ) / 2, results in an “rule following” index that ranges from -1 

(perfect feature-based generalization) to + 1 (perfect opposites-rule generalization). In the 

absence of concurrent load during training, the mean rule-following index is .65 (SD = 0.33), 

which is significantly greater than zero, t(12) =7.20, p < .005. In the presence of concurrent 

load during training, the mean rule-following index is -.33 (SD = .50), which is not 

significantly less than zero, t(8) = 1.99, p = .08. 

 In summary, concurrent load reverses the order of allergy prediction proportions for 

novel test items, compared to conditions of full attention (no concurrent load). In the absence 

of concurrent load, the order of allergy prediction proportions implies rule-based 
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generalization, whilst in the presence of concurrent load, the order of allergy prediction 

proportions implies similarity-based generalization. This pattern in the means is supported by 

statistically significant interactions in the novel test items, and no reversal or statistically 

significant interaction in the familiar test items. However, the simple effects (IJ > MN; K/L < 

O/P) in the presence of concurrent load fall short of significance, possibly due to the 

relatively small sample size. Hence, one goal of Experiment 2 was to attempt to provide a 

larger-sample replication of the results of Experiment 1. 

 The other goal of Experiment 2 was to identify the locus of the effect of concurrent 

load. In the load condition of Experiment 1, concurrent load was applied during both training 

and test. In the no-load condition of Experiment 1, no concurrent load was applied in either 

phase. The difference between the load and no-load conditions of Experiment 1 might 

therefore be as a result of concurrent load during training, concurrent load during test, or 

both.  In Experiment 2 we factorially manipulated the presence of concurrent load during the 

training phase, with the presence of concurrent load during the test phase.  

 

Experiment 2 

Method 

 Participants, apparatus and stimuli. One hundred and forty eight National 

University of Singapore students took part in return for course credit. They were tested in 

groups of between 10 and 20 students, with each participant seated at a different PC. All PCs 

were of an identical make and model, and each was connected to a 15” CRT monitor, and to 

headphones. The E-prime package (Version 1.1) was employed. The stimuli were identical to 

those employed in Experiment 1. 

 Procedure. Each participant was randomly allocated to one condition of the 2 x 2 

factorial between-subjects design of this experiment. The two factors were concurrent load 
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during the training phase (present or absent) and concurrent load during the test phase 

(present or absent). The crossing of these factors led to four experimental conditions – No 

Load (no concurrent load during training and no concurrent load during test), Train Load 

(concurrent load during training, but not during test), Test Load (concurrent load during test 

but not during training), and Both Load (concurrent load during training and concurrent load 

during test). The procedure for the Both Load condition was identical to the procedure in the 

Load condition of Experiment 1. The Train Load condition was identical to the Both Load 

condition, except that digits were not presented over headphones during the test phase (they 

were replaced by a silent pause of the same duration) and participants responded to the 

visually presented digits during the test phase by pressing the corresponding key (e.g. 

pressing “3” if the number 3 appeared). In a corresponding manner, the Test Load condition 

was identical to the Both Load condition, except that digits were not presented over 

headphones during the training phase, and participants responded to the visually presented 

digits during the training phase by pressing the corresponding key. 

 The procedure for the No Load condition was identical to the procedure for the No 

Load condition in Experiment 1, except for the ten trials of practice on the digit task at the 

beginning of the experiment. In Experiment 2, all conditions began with ten trials of practice 

on the digit task (in Experiment 1, the No Load condition had practice trials, but these simply 

involved pressing the key corresponding to the digit shown on screen, and no digits were 

presented over headphones). 

 

Results and Discussion 

 Thirty seven participants failed to meet the training criterion within the eight blocks 

available, and were excluded from further analysis (leaving 34, 23, 25, and 29 participants in 

the No Load, Train Load, Test Load, and Both Load conditions, respectively).  After these 
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exclusions, proportion correct in the final training block was similar for those who 

encountered concurrent load during training (mean = .92, SD = .02), and those who did not 

(mean = .93, SD = .03), t(109) = 1.89, p > .05. Those encountering concurrent load during 

training took longer to reach criterion (mean = 6.0 blocks, SD = 1.3) than those who did not ( 

mean = 4.8, SD = 1.8),  t(109) = 4.23, p < .0005. Accuracy on familiar test items was 

investigated via ANOVA, with a between-subject factor of concurrent load during training 

(present vs. absent), another between-subject factor of concurrent load during test (present vs. 

absent), and a within-subject factor of test item type (positive items vs. negative items; where 

positive and negative indicate the presence and absence of an allergic reaction to the food 

during training). Although there was a main effect of test item type, F(1,107) = 2539, p < 

.0005, no other main effect or interaction approached significance, F(1, 107) < 1.9. Hence, no 

statistically reliable effects of concurrent load were found on test items familiar to 

participants. The mean proportion of allergy responses to positive familiar test items was .90, 

whilst the mean proportion of allergy responses to negative familiar test items was .11. 

 As in Experiment 1, the result of central interest is the generalization performance on 

the novel test items. Considering the novel compounds (IJ, MN) first, an ANOVA with two 

between-subject factors (load during training: present or absent; load during test: present or 

absent) and one within-subject factor (compound type: IJ or MN) revealed a significant 

interaction between compound type and concurrent load during training, F(1, 107) = 12.93, p 

< .0005. This interaction is illustrated in Figure 3A. No main effects, and no other 

interactions, approached significance, F(1, 107) < 1.5. In particular, there was no significant 

main effect of concurrent load during test, and no interaction of load during test with any 

other factor. Similarly, consideration of the novel elements during the test phase revealed a 

significant interaction between element type (K/L vs. O/P) and load during training, F(1, 107) 
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= 22.75, p < .0005. This interaction is illustrated in Figure 3B.  Again, no main effects, and 

no other interactions, were significant, F(1, 107) < 2.5.   

 Further investigation of the interaction illustrated in Figure 3A  revealed that the 

proportion of allergy responses was significantly higher for MN than for IJ in the absence of 

concurrent load during training, t(58) = 3.26, p < .005. In the presence of concurrent load 

during training, IJ was higher than MN, and this difference is significant as a one-tailed test, 

t(51) = 1.72, p < .05. A one-tailed test is appropriate here, given that the direction of the trend 

is predicted on the basis of both theory and the results of Experiment 1
1
. Further investigation 

of the interaction illustrated in Figure 3B reveals that the proportion of allergy responses was 

significantly higher for K/L than for O/P in the absence of load during training, t(58) = 2.85, 

p < .01, whilst K/L was significantly lower than O/P in the presence of load during training, 

t(51) = 3.55, p < .005. 

 Finally, as in Experiment 1, it is possible to combine the four probabilities IJ, MN, 

K/L and O/P into a single index of opposites-rule versus surface-similarity generalization. 

Computing ( MN - IJ + mean[K,L] – mean[O,P] ) / 2, results in an “rule following” index that 

ranges from -1 (perfect feature-based generalization) to + 1 (perfect opposites-rule 

generalization). In the absence of concurrent load during training, the mean rule-following 

index is .26, which is significantly greater than zero, t(58) = 3.41, p < .005. In the presence of 

concurrent load during training, the mean rule-following index is -0.22, which is significantly 

less than zero, t(51) = 2.69, p < .05.  

 In summary, it seems that concurrent load during the training phase, rather than 

concurrent load during the test phase, is the critical factor underlying whether generalization 

is consistent with an opposites rule or with surface similarity.  
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General Discussion 

 In Experiment 1, we trained all participants to a high criterion of accuracy (89%). 

Half of the participants were trained and tested under full attention, whilst the remaining 

participants were trained and tested under a concurrent cognitive load. Those not under 

concurrent load showed generalization more consistent with an abstract rule, whilst those 

under concurrent load showed generalization more consistent with surface similarity. 

Experiment 2 replicated this effect, and demonstrated that it was load during training, rather 

than load during test, that was critical in determining the form of generalization observed. 

 The learning task employed in these studies was introduced by Shanks and Darby 

(1998). The task is unusual in that there is, amongst the published discussions of this task we 

are aware of, broad agreement that the opposites-rule generalization seen in this task is 

evidence for deliberative processes in human contingency learning (e.g. those thought 

processes outside the scope of non-recurrent associative models; Cobos et al., 2003; De 

Houwer & Beckers, 2002; Le Pelley et al. 2005; Mitchell et al., 2009; Verguts & Fias, 2009). 

The current level of published agreement concerning the Shanks and Darby task contrasts 

with the contentious nature of some other forms of putatively deliberative behavior that have 

been reported in adults (e.g. DeCaro et al., 2008 vs. Tharp & Pickering, 2009), in infants (e.g. 

Marcus, Vijayan, Rao & Vishton, 1999 vs. McClelland & Plaut, 1999), and in rats (Beckers, 

Miller, De Houwer & Urushiara, 2006 vs. Haselgrove, 2010). 

 Of course, a consensus amongst published discussions that opposites-rule 

generalization is deliberative does not necessarily imply that an account of “opposites-rule” 

generalization is impossible within an associative / connectionist architecture. In the 

Introduction, we mentioned the connectionist model of the Shanks-Darby results presented by 

Verguts & Fias (2009) and argued that their model is consistent with a deliberative account in 

the sense that it makes use of a recurrent network architecture. Deliberative processes are 
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commonly considered to involve a degree of recurrence (e.g. Milton & Wills, 2004), and 

certain recurrent network architectures are known to have the computational power of Turing 

machines (Siegelmann & Sontag, 1995). It is therefore difficult to conceive of any result that 

would lead to the rejection of recurrent network architectures as a class of explanation for 

human behavior.  

A perhaps more substantive issue is that one might be able to explain opposites-rule 

generalization within relatively simple associative architectures. The theoretical possibility of 

such an account is highlighted by the recent publication of relatively simple associative 

models of a range of effects in learning previously claimed to be outside the scope of such 

models (e.g. Haselgrove, 2010; Schmajuk, 2010). In the context of the current data, it might 

be possible, for example, to develop an account based on the concept of outcome-mediated 

generalization (Dickinson, personal communication). During training, A and B are both 

individually paired with the outcome, so presentation of the AB compound may lead to the 

activation of a super-normal outcome representation (“++”). That super-normal outcome 

representation would then itself become associated to an absence-of-outcome representation. 

The novel test phase compound IJ is predicted to be followed by no outcome because both I 

and J were associated with an outcome during training, and thus the IJ compound activates 

the super-normal outcome representation which in turn activates a representation of outcome 

absence. It seems that such an account must assume that activation of the super-normal 

outcome representation has less control over responding than the activation of the no-

outcome representation by the super-normal outcome representation. This would seem to 

imply, in turn, some process that gives greater weight to super-normal (and presumably also 

sub-normal) outcome representations due to their high diagnosticity in the context of the 

training phase. Similar processes have been previously hypothesized at the level of cue 

representations (e.g. Mackintosh, 1975). 
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Although such an account is potentially promising, it needs further elaboration before 

it could encompass the results presented in the current article. Concurrent load during training 

results in the opposites-rule generalization observed to novel stimuli reversing to a pattern of 

feature-based generalization to those novel stimuli. At the same time, concurrent load during 

the test phase does not affect the pattern of generalization to novel test items. Both patterns of 

generalization (opposites rule and feature-based) were found in the context of near-perfect 

accuracy on the training items. Thus, any proposed mechanism faces a number of challenges. 

It should be unaffected by load at test. It should be able to produce high accuracy under load 

during training. It should be able to produce the correct pattern of generalization performance 

both with and without load during training – noting that the effect of load at training is to 

reverse the ordinal pattern of results at test. Finally, it needs to provide some explanation of 

why concurrent load would change the way the problem was solved.  

The explanation we tentatively offer for our results is that participants initially 

approach the training phase through a process of exemplar storage and retrieval. This is a 

relatively non-deliberative process (which is not to say it is necessarily entirely automatic, see 

e.g. Logan & Etherton, 1994). Under conditions of full attention during training, participants 

notice there is a non-intuitive rule that substantially reduces the number of things one has to 

remember. At limit, all one needs to remember is the rule that compounds predict the 

opposite to their elements, and that the compounds CD, EF, and KL make Mr. X sick. 

Everything else can be derived – for example, A on its own will make Mr.X sick, because A 

is not in any of the three compounds that make him sick (CD, EF, KL), and compounds 

predict the opposite to their elements. 

This process of rule extraction is assumed to be relatively deliberative and effortful, 

requiring as it does the generation of verbal hypotheses and then testing them against 

subsequently presented training items. If the process of rule extraction is assumed to be 
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relatively deliberative and effortful, then it is not unreasonable to assume it might be 

selectively disrupted by concurrent load, whilst concurrent load might be expected to leave 

the processes of exemplar storage and retrieval relatively intact. Generalization to novel test 

items will depend on the nature of the representations developed during training. Under 

concurrent load, the representations are exemplars, and generalization would therefore be 

expected to be on the basis of surface similarity. Under full attention, the opposites rule is 

extracted, and generalization might therefore be expected to be on the basis of that opposites 

rule. Under this account, the fact that concurrent load during test has no detectable effect 

suggests that whilst the extraction of an opposites rule is highly effortful, the application of 

an already-extracted rule is not particularly effortful. The explanation we offer for our results 

falls amongst the broad class of explanations that assume cognition in adult humans is the 

product of at least two systems – one system that is deliberative, and perhaps approximates 

the function of a physical symbol system (Newell, 1980), and another system that is non-

deliberative, and which might be approximated by a simple associative system. Explanations 

of this general class include those forwarded by Ashby et al. (1998), Brooks (1978), McLaren 

et al. (1994, see also Spiegel & McLaren, 2006; Jones & McLaren, 2009; Livesey & 

McLaren, 2009) and Sloman (1996).  

 In addition to simple associative, and dual-process, accounts of human cognition, a 

third class of theory is that all learning is the product of a deliberative system (e.g. inferential 

accounts; Mitchell et al., 2009). In relation to the results of the current experiments, 

inferential accounts would presumably assume that not only opposites-rule performance, but 

also surface similarity performance, was the product of an inferential process in this task. In 

order to predict any effect of concurrent load, such an account must assume that opposites-

rule performance is more effortful than surface similarity performance – perhaps because 

participants arrive with a pre-experimental hypothesis that similar meals lead to similar 
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outcomes, whilst the non-intuitive opposites-rule hypothesis is only arrived at through a 

relatively effortful process of hypothesis-testing during training. Concurrent load presumably 

interferes with this process, leaving the participant with just memory for the examples (which 

is employed for familiar test items) and a pre-experimental surface similarity hypothesis 

(which is employed for novel test items). As in a dual-process account, in order to account for 

the apparent ineffectiveness of load during test, one needs to assume that the application of a 

hypothesis is less effortful than its extraction.  

 In summary, an inferential explanation seems to need to assume both the presence of 

a relatively non-deliberative exemplar storage and retrieval process, and that certain types of 

inferential process are also relatively non-deliberative (e.g. inferences on the basis of a pre-

experimental hypothesis about novel test items). In other words, an inferential explanation 

seems to need to assume the presence of not only relatively non-effortful forms of learning 

and retrieval, but also the presence of relatively non-effortful forms of inference. When 

expressed in those terms, an inferential account seems to largely converge with the dual-

process we offer above. This contention, however, requires further research – research that 

will probably need to involve the application of formal models to a broader range of data than 

is currently typical (for further discussion of the importance of such an approach, see Wills & 

Pothos, 2011). 

 The results of the current study seem to lead to a couple of predictions amenable to 

further test. First, De Houwer and Vandorpe (2009) demonstrated the presence of opposites-

rule performance in the Implicit Association Task (IAT). Although the IAT is conducted 

under conditions of full attention, performance on the IAT is often considered to reflect non-

deliberative processing. However, the current results raise the possibility that the application 

of concurrent load to De Houwer and Vandorpe’s IAT procedure might lead to a reversal 

from opposites-rule to surface-feature generalization. If such a pattern of results were 
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observed, it would further complicate the interpretation of the IAT as a measure of non-

deliberative responding (cf. Fazio & Olson, 2003). A second prediction that can be made on 

the basis of the current results is that the failure of Lamberts and Kent (2007) to find an effect 

of concurrent load on the inverse base-rate effect might be due to their decision to apply 

concurrent load only during the test phase. By analogy to the pattern of results reported in the 

current paper, one might hypothesize that it is the acquisition of the knowledge during the 

training phase, rather than demonstration of that knowledge in the test phase, that is 

particularly effortful in the inverse base-rate task. Concurrent load during training might 

therefore be expected to be more effective in modulating performance in this task. 

 Another avenue for further research might be to investigate whether there are 

conditions under which non-human animals would demonstrate generalization performance 

consistent with an opposites rule in this task. A number of recent studies have examined the 

extent to which generalization might be qualitatively different in human and non-human 

animals, but the results have been mixed. For example, Couchman, Coutinho and Smith 

(2010) reported that apes showed a greater incidence of overall similarity generalization, and 

a lower incidence of generalization on the basis of a single dimension, than humans. 

However, Wills et al. (2009) found no differences between humans, squirrels and pigeons in 

the incidence of overall similarity generalization, and found that the incidence of overall 

similarity sorting in humans and pigeons was affected by stimulus factors (e.g. spatial 

separate vs. spatially contiguous features) in a similar way in both species. Part of the 

problem may be that, whilst generalization on the basis of overall similarity is often 

considered to be the product of non-deliberative processes in humans (e.g. Kemler Nelson, 

1984), this conclusion is rendered more complex by the increasing number of demonstrations 

that overall similarity generalization in humans can also be the product of a deliberative 

process (Milton, Longmore & Wills, 2008; Milton, Wills & Hodgson, 2009; Wills, Longmore 
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& Milton, 2011). The relatively broad agreement that opposites-rule generalization in the 

Shanks-Darby task is evidence for deliberative processing in humans may make it 

particularly suitable as a device for examining the extent of deliberative processing in non-

human animals.  

 In summary, we have reported two demonstrations that the availability of working 

memory resources appears to be an important determinant of how we generalize from known 

instances to novel items. In our studies, information acquired under full attention seems to 

lead to generalization more consistent with the application of an abstract rule, whilst 

information acquired in the presence of concurrent load seems to lead to generalization more 

consistent with surface similarity. 
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Footnote 

 

 
1
 Alternatively one can make use of the information provided by Experiment 1 within a 

two-tailed test by employing simple meta-analysis. Meta-analysis of Experiments 1 and 2 

using the two-tailed probabilities (see Rosenthal, 1978) confirms that IJ is significantly 

greater than MN overall, Z 1 = 1.63, Z 2 = 1.69,  Z combined = 2.34, p = .02.  
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Figure 1. A. The training and test trial types in the Shanks and Darby (1998, Experiment 2) 

allergy prediction task; letters indicate foods eaten by a hypothetical patient Mr. X, + = 

patient develops an allergic reaction; - = patient does not develop an allergy reaction; ? = no 

feedback given. B. Critical test trials of Shanks and Darby (1998, Experiment 2) – probability 

of participants predicting an allergic reaction in Mr. X to novel meals, as a function of 

accuracy in the final block of the training phase. “Low” = low final training block accuracy 

(< 78% correct). “High” = high final training block accuracy (100% correct). Figure adapted 

from Shanks and Darby (1998). 
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Figure 2. Results of Experiment 1; mean probability of participants predicting an allergic 

reaction in response to novel stimuli IJ, MN, O/P and K/L, as a function of the presence or 

absence of a concurrent load during training and test.  
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Figure 3: Results of Experiment 2; mean probability of participants predicting an allergic 

reaction in response to novel stimuli IJ, MN, O/P and K/L, as a function of the presence or 

absence of a concurrent load during training. The graphs average across conditions in which 

concurrent load was present and absent during the test phase, as the presence of test phase 

load had no significant effect on responding. The un-aggregated means (i.e. for each of the 

four conditions separately) are presented in the Supplementary Materials.  
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 In the main text, results of Experiment 2 were reported as averages across the Test 

Load factor, as the presence of concurrent load during test had no significant effect on any of 

our measures. For completeness, these Supplementary Materials report the same measures in 

an un-aggregated manner (i.e. separately for each of the four between-subject conditions). 

 

 No Load Train Load Test Load Both Load 

Final training accuracy  .93 

(.03) 

.92 

(.02) 

.93 

(.03) 

.92 

(.03) 

Blocks to criterion 5.2 

(1.9) 

6.2 

(1.3) 

4.2 

(1.6) 

5.9 

(1.4) 

 

Table S1. Training phase results of Experiment 2, as a function of between-subjects 

condition. Final training accuracy is the mean proportion correct in the final training block. 

Blocks to criterion is the mean number of blocks completed in order to meet the training 

criterion. No Load,  Train Load, Test Load, and Both Load indicate the four between-subject 
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conditions of Experiment 2. Numbers in parenthesis are standard deviations. All results 

include only those participants who passed the training criterion. 

 

 No Load Train Load Test Load Both Load 

IJ .35 

(.45) 

.61 

(.48) 

.28 

(.44) 

.55 

(.44) 

MN .57 

(.49) 

.35 

(.49) 

.74 

(.41) 

.40 

(.45) 

K/L .32 

(.42) 

.19 

(.34) 

.46 

(.44) 

.19 

(.32) 

O/P .24 

(.34) 

.47 

(.38) 

.12 

(.23) 

.42 

(.33) 

Familiar +ve .90 

(.11) 

.89 

(.11) 

.91 

(.08) 

.89 

(.10) 

Familiar  –ve .11 

(.10) 

.14 

(.11) 

.08 

(.11) 

.10 

(.10) 

 

Table S2. Proportion of allergy responses in the test phase of Experiment 2, as a function of 

between-subjects condition and test item. K/L indicates the mean of responses to K and L; 

O/P correspondingly. Blue shading indicates a pair of compound test items for which the 

relative magnitude of allergy responses is consistent with opposites-rule generalization. 

Green shading = element test items consistent with opposites-rule. Salmon = compound test 

items consistent with feature-based generalization. Pink = element test items consistent with 

feature-based generalization. Familiar +ve  is the mean of allergy responses to stimuli also 

presented in training and for which the correct response in training was “allergy”. Familiar –
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ve is the corresponding mean for familiar stimuli for which the correct response was “no 

allergy”. No Load,  Train Load, Test Load, and Both Load indicate the four between-subject 

conditions of Experiment 2. Numbers in parenthesis are standard deviations. All results 

include only those participants who passed the training criterion. 

 


