Statistics by Hand An Introductory Course for Psychologists

Variability and variance

Lovely, lovely maths (reprise)

BEDMAS

- Order of operations
 - Brackets first
 - Exponents next (e.g. 2⁶)
 - Then Division and Multiplication
 - Then Addition and Subtraction

$$-3 \times 2 + 6 = 12$$
, but $3 \times (2 + 6) = 24$

- Sigma (Σ)
 - -X = [123]
 - $-\Sigma X = 6$

Revision: Sample and population

 <u>Population:</u> The entire set of measurements in which the investigator is interested.

 Sample: The sub-set of measurements actually collected by the investigator.

Descriptive statistics

- Measures of central tendency
 - Mean
 - Mode
 - Median
- Measures of variability around the central tendency
 - Variance
 - Standard deviation

Variability, and variance

Tutorials	65	96	84	30	27
Lectures	64	60	47	76	55

- Effects of teaching programme on exam performance.
- Is there a difference?

Variance

Tutorials	65	96	84	30	27	60.4
Lectures	64	60	47	76	55	60.4

- Means are identical, but there's an important difference: distance from the mean.
- Variance is (basically) average distance from the mean.

Variance

 By definition, variance is the average (squared) difference from the mean.

$$\sigma^2 = \frac{\sum (X - \overline{X})^2}{N}$$

Biased estimates

- Generally, we have a sample but we want to conclude about a population.
- Unfortunately the variance of sample tends to under-estimate the population variance.
- This can be demonstrated by the following example:

Biased estimates

- First, take a population of 3 numbers:
 - 1, 2, 3
 - The mean of these numbers = 2
 - Their variance = 2/3 (Population variance)
- Now, let's try to estimate the population variance from all possible samples of size N = 2.

Biased estimates

		Mean	Variance
1	1	1.00	0.00
1	2	1.50	0.25
1	3	2.00	1.00
2	1	1.50	0.25
2	2	2.00	0.00
2	3	2.50	0.25
3	1	2.00	1.00
3	2	2.50	0.25
3	3	3.00	0.00
	Average	2.00	0.33

- Variance, on average, is under-estimated.
- We know the population variance is 0.67, but our estimates average to just 0.33.

Sample variance

• The "fix" is to use *N-1* rather than *N*.

$$s^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

• Note the name change from σ to s.

Unbiased variance

		Mean	Variance	Variance (N-1)
1	1	1.00	0.00	0.00
1	2	1.50	0.25	0.50
1	3	2.00	1.00	2.00
2	1	1.50	0.25	0.50
2	2	2.00	0.00	0.00
2	3	2.50	0.25	0.50
3	1	2.00	1.00	2.00
3	2	2.50	0.25	0.50
3	3	3.00	0.00	0.00
	Average	2.00	0.33	0.67

Now it's unbiased.

Calculating variance

Lectures	64	60	47	76	55	Mean 60.4
(X-X)	3.6	-0.4	-13.4	15.6	-5.4	
$(X-\overline{X})^2$ 12.96	0.16	179.56	243.36	29.16		
$\Sigma (X-X)^2 = 465.$	2	$s^2 = 46$	5.2 / 4 =	116.3		

Inferential statistics

- Group differences in central tendency
 - Wilcoxon rank-sum test
- Group differences in variability
 - Variance test

Homogeneity of variance

						Mean Var.	
Tutorials	65	96	84	30	27	60.4	971.3
Lectures	64	60	47	76	55	60.4	116.3

- Do the groups differ significantly in variance?
- Variance test:
 - Divide larger variance by smaller
 - F = 971.3 / 116.3 = 8.35
 - If F exceeds appropriate value in F-table, difference is significant.

Degrees of freedom

- "Degrees of freedom" is the number of numbers free to vary given what we know about them.
 - When we calculate variance, we have to know the mean.
 - If we know the mean, only N-1 numbers can freely vary
 - e.g. 1,2,X with a mean of 2.
 - X has to be 3.
 - Hence, each variance has d.f. of N-1.

Practice session

Attempt problems V-1, V-2